PARALLEL IMPLEMENTATION OF GRAPH ENCODER EMBEDDING IN THE LIGRA
GRAPH FRAMEWORK

Ariel Lubonja

Johns Hopkins University
Dept. of Applied Mathematics and Statistics
Baltimore, MD, USA
alubonjl@jhu.edu

ABSTRACT

In this paper we show how graph-parallel execution
can deliver order of magnitude speedups to a linear
time graph embedding task with few lines of code and
little changes to the serial implementation. The target
method is Graph Encoder Embedding, a graph encoder
that converges asymptotically to the Spectral Embed-
ding, while maintaining a linear runtime in the number
of edges. Despite this linear complexity, it does not
scale to large graphs due to limitations of running on
a single-thread. We observe that this Encoder is very
suitable to implementation in the Ligra graph-parallel
framework and we contribute a fast, highly paralleliz-
able implementation of Adjacency Matrix version of
GEE and report on the speedup results. We also con-
tribute a review of Dynamic graph algorithms. These
algorithms study a graph not only along the spatial
domain, but also across the temporal one. Measuring
how attributes such as a node’s importance changes
as edges are added or removed, and generating insights
from this information is a research area that is relatively
unexplored, considering how ubiquitous graphs are in
Computer Science. We will describe the motivation,
challenges, approaches taken to overcome them, and
promising future work in this area.

Index Terms— Graph Algorithms, Graph Embed-
ding, Spectral Embedding, Temporal Graphs, Paral-
lelism, Systems

1. INTRODUCTION

A graph G(n,s) is a mathematical object that consist of
a set of nodes n and edges s that connect these nodes.
They are a concise way of capturing relationships be-
tween objects, and occur in many domains such as so-
cial networks, power grids, road, communication and
citation networks, etc. Recently, the field of Graph Neu-
ral Networks is using graphs to get state of the art per-
formance in many applications [1, 2]. However, two

Randal Burns

Johns Hopkins University
Department of Computer Science
Baltimore, MD, USA
randal@cs.jhu.edu

main challenges to learning on graphs exist. From a sys-
tems perspective, any operation involving graphs has
to face the challenge that their binary adjacency ma-
trix representation, which reveals whether two nodes
are directly linked with an edge is ©(V?) in memory,
and therefore infeasible to store for all but the small-
est graphs. From a learning perspective, the challenge
centers around incorporating existing Machine Learn-
ing methods, that are developed within domains where
Euclidean distance is defined, to graphs, whose struc-
ture gives no indication as to the L, distance between
any pair of nodes [2].

Graph Embedding is a popular solution to both
these problems. It consists of building low-dimensional
feature representations of the graph’s nodes while en-
capsulating as much structural information (neigh-
borhoods, shortest paths, centrality, etc.) as possible
from the graph. Various embedding methods have
been proposed: Spectral Clustering [2] is perhaps the
most studied, and Deep Learning approaches such as
DeepWalk [3], node2vec [4] and Graph Convolutional
Networks (GCN) [5] are a more recent development.

We will focus our attention on a Spectral Embed-
ding method called Graph Encoder Embedding (GEE)
[6]. This approach addresses the computational concern
of other embedders: many, such as spectral embedding
and GCN run in O(nz) time, and others, like node2vec,
run in O(n) but have large hidden constants, making
them impractical on consumer-grade PCs [6]. GEE pro-
poses an O(nK +s) algorithm for node embedding where
s is the number of edges, # is vertices, and K is the num-
ber of classes we choose to project down to. Since in
virtually all graphs nK < s, this algorithm is practically
always linear in the number of edges. As a result, the
authors of GEE observe a runtime of 10 minutes for a
billion-edge graph.

Many of today’s graphs, however, regularly run in
the hundreds of billions of edges [7-9]. Further com-
plicating matters are Dynamic Graphs - a graph G(n,s)

with a list of changes I at time #;. Embedding these
types of graphs requires computing the embedding sev-
eral times along a graph’s history, or alternatively incre-
mentally updating the embedding for each change in
the graph, requiring keeping the embedding in mem-
ory at all times.

These two approaches represent the fundamental
tradeoff in Dynamic graphs analysis: computation vs.
memory footprint [10]. Methods to optimizing memory
footprint are discussed in Section 5. Sections 2-4 are
dedicated to the core issue of the first approach: the
long running time of GEE for big graphs, and how it
can be addressed using graph parallelism. Section 2
describes the relevant work - Graph Encoder Embed-
ding and the Ligra [11] graph framework as well as
optimizations we made in our implementation. Sec-
tion 3 describes how we ran our tests and 4 presents
the results and speedup observed from parallelizing
GraphEncoderEmbedding, and limitations. Section 5
presents our Review work in the field of Dynamic graph
algorithms.

2. PARALLELIZING GRAPH ENCODER
EMBEDDING

We observe that Graph Encoder Embedding runs on
all the edges of the graph independently, making it
very suitable to parallel execution. To exploit this par-
allelism, we utilize the Ligra graph framework [11].
Ligra allows parallelism over both vertices and edges
of a graph by exposing a user-defined EdgeMap and a
VertexMap function, and a frontier of execution - a set
of vertices or edges the corresponding function will be
applied to.

2.1. Brief Description of the Graph Encoder Embed-
ding (GEE) Algorithm

The semi-supervised GEE algorithm is shown in Al-
gorithm 1. Since we’re only implementing the adja-
cency matrix version, the only relevant lines are 14-24.
The algorithm begins by counting the frequency
of each label in Y and initializes the corresponding
nodes’ embeddings in the projection matrix W to nik
(lines 14-18). The Z embedding matrix is incremen-
tally constructed by iterating over the edges (u,v) of the
graph, adding the frequency of the destination node v’s
true label times the edge weight (W(v,Y(v)) - w). Note
W(v,Y(v)) € {0, nlk}, so lines 22-23 only update Z if v’s
true label is known, and this happens in both directions
of an edge for undirected graphs. Because Z is updated
through addition, a commutative operation, we are not
constrained to iterating over the edges in line 19 in any
certain order. The loop at line 19, which constitutes the

Algorithm 1: Semi-Supervised Graph Encoder
Embedding

input : E € R™3: edge triples (source, destina-
tion, weight)
Y € {0,...K}": Ground truth of node
embeddings (if available)
Lap: Boolean variable whether Adja-
cency Matrix or Graph Laplacian is to
be used (optional)

output:

Z € R®": node embeddings matrix

W e R™X: projection matrix

1 Function GEE(E,Y,Lap):

2 W = zeros(n, K)

3 if Lap == True then

4 D =zeros(n,1); // Degree vector
5 for i=1:s do

6 D(E(i,1)) = D(E(i, 1))+ 1;

7 D(E(i,2)) = D(E(i,2))+ 1;

8 end

9 D =D793; // Elementwise Sqrt.
10 fori=1:sdo

11 ‘ E(i,3) =E(i,3)- D(E(i, 1)) - D(E(3, 2));
12 end
13 end
14 fork=1:K do

15 ind = find(Y = k);

16 ny = sum(ind); // Count indices of class k
17 W(ind, k) = nl—k;
18 end
19 fori=1:sdo

20 // (u-source, v-dest., w-weight)
21 u=E(i1); v=E(2); w=E(,3);
22 Z(u,Y(v)) +=W(v,Y(v)) - w;
23 Z(v,Y(u)) +=W(u,Y(u)) w;
24 end

25 EndFunction

vast majority of the algorithm’s runtime, can be safely
run in parallel without compromising correctness. The
resulting embedding vector Z, which is a linear projec-
tion of the graph’s adjacency matrix onto the span of W,
will be identical to the serial implementation.

2.2. Ligra and the EdgeMap Model

Having established that GEE computation can be paral-
lelized, we will use Ligra [11] to take advantage of this
parallelism. Ligra is a graph-parallel framework that
exploits the frontier-based nature of many graph algo-
rithms. For example, Fig. 1 shows a simple Breadth-

ends of
paths on

explored nodes

Fig. 1. Frontier nature of Breadth-First Search. Image
credit: artint.info

First Search implementation. Initially, all nodes start off
in the set of unexplored nodes (blue), with the chosen
starting point in the ”to be explored” active set ().
After one iteration, the starting node is put in the vis-
ited set (black), and its unseen but reachable neighbors
are added to the active set (red), iterating until all nodes
reachable from the starting node have been visited.

One can observe that, at any iteration of the algo-
rithm, only the outgoing edges of the nodes in the ac-
tive set will be used, and the other nodes and edges are
not involved in the calculation. This active set of graph
entities is called the frontier. One could parallelize each
iteration of BFS by mapping the computation over the
set of outgoing edges of the nodes in the active set across
multiple processing units. Some caution must be taken
to deal with race conditions, as two edges from different
sources might arrive at the same node simultaneously,
and a decision must be made as to which source node
will be chosen as the parent.

Ligra’s authors observed that many graph algo-
rithms have this frontier-based nature and they de-
veloped a graph framework that exposes an EdgeMap
and a VertexMap function to the user. The user needs
to define the algorithmic logic that applies across a set
of Edges or Vertices by filling in the implementation
of the corresponding function. The user also need to
define and maintain the frontier the chosen function
will be applied to, and deal with race-conditions and
other potential correctness issues arising from an ar-
bitrary order of execution. The benefit of using Ligra

is often an order of magnitude or more speedup over
most serial algorithms. The actual observed speedup
is determined by the underlying hardware in terms of
memory and CPU core count, the efficiency of the user’s
implementation, and by Amdahl’s Law.

2.3. Implementation

Graph Encoder Embedding’s semi-supervised algo-
rithm, when viewed from the EdgeMap point of view,
functions very similarly to PageRank. At each itera-
tion, PageRank processes all the edges of the graph.
Since PageRank is a property of the graph’s nodes, not
edges, the algorithm then pushes or pulls (depending
on the implementation) the result computed over edges
into the nodes. This is exactly what GEE does in lines
14-18. The main difference is that, in contrast to PageR-
ank which takes multiple iterations to converge, GEE
iterates only once over the graph’s edges. Since Ligra
already provides a PageRank implementation, we use it
as a starting point and morph it into GraphEncoderEm-
bedding. In the EdgeMap model, GEE is an algorithm
with all the graph’s edges in the active frontier.

2.4. Optimizations

Various optimizations were implemented to further
speed up computation. Ligra is written in C++ - a high-
level compiled language. This makes it compare favor-
ably to interpreted languages like Python and MatLab,
since the compiler can introduce optimizations into
the code such as unrolling loops, removing unneces-
sary variables and unused code branches etc. Crucially,
Clang allows for OpenMP [12] support, which enables
parallel execution across CPU cores.

Further, to maximize cache utilization, we flattened
the matrices Z, W into vectors. Because C is a row-major
order language, matrices are accessed row-by-row, and
switching rows would incur a cache miss. Z € RK*" and
W e R, 50 one row would be either O(1) or O(K),
both far shorter than a CPU cache line (15MB in our
machine), so the algorithm would cost either O(K) or
O(n) cache misses. Since accessing an item from main
memory is orders of magnitude slower than from cache,
this severely hampers performance. By flattening these
matrices into a single long row vector, we can fill the
cache with either matrix, minimizing cache misses and
maximizing the throughput of the processor. Despite
this, our code maintains the simplicity of much Ligra
code: the nontrivial parts run to less than 50 lines.

3. SETUP FOR BENCHMARKS

In order to benchmark the speedup we expect, we ran
both the original GEE code and our Ligra implemen-

tation on graphs of various sizes, up to the limit our
machine’s memory would allow. We ran Ligra in both
serial and parallel fashion, to isolate the effects of us-
ing C++ and vectorizing, from that of scaling to many
processors. Results on the most powerful server-grade
machine, with 2 Intel Xeon E5-2420v2 CPUs, each of
6 cores and 12 threads, and 32GB of shared RAM, are
presented in this section, using the fastest available
GEE code - its MatLab version. Benchmarks run on a
consumer-grade desktop computer and on the slower
Python version of GEE can be viewed in Appendix A.2.

Note that our Ligra implementation assumes an
undirected and unweighted graph even if the graph is
otherwise: we preprocess the input graph to drop the
weights are dropped if they exist, and edges are set to
be bidirectional (redundancy caused by directed graphs
on this is accounted for). The implementation can triv-
ially be modified to handle weighted graphs, since the
code simply assumes the weights are set to 1 - one
only need initialize this weight vector with the desired
edge weights. Implementing directed graphs is slightly
trickier, since one has to make sure to not perform
the calculation twice on bidirectional edges. However,
this is irrelevant for the purposes of this benchmarks,
as both implementations iterate over the exact same
number of edges.

4. FINDINGS

We tested on graphs of various sizes and found that
the runtime of all implementations of GEE scales lin-
early with the number of edges of the graph as expected
(Table 1), however, the runtime of both the serial and
parallel Ligra implementations is well ahead of the pa-
per’s MatLab implementation. We observe an order
of magnitude improvement going from MatLab to a
single-core Ligra implementation: this can most likely
be attributed to the benefits of vectorizing the matrices,
and using a compiled language. We see a further 2.5-
4.5x improvement when comparing the serial version
of Ligra to the parallel implementation.

Using the largest graph our machine could load:
orkut-groups, we managed to show how the runtime
can be reduced from more than 3 minutes in MatLab
to around 6 seconds, a 33x speedup. The improvement
versus the MatLab version for the soc-Pokec graph is
more than 2 orders of magnitude.

4.1. Application to Temporal Graph Analysis

In a temporal graph setting, where one would need to
run such algorithms repeatedly after a certain amount
of changes has been made (i.e. a checkpoint), this run-
time difference becomes emphasized. For example, if

Runtime Scaling for Implementations (Seconds)
250

e latLab
200

Ligra (Serial)

150 Ligra (Parallel)

Twitch (86MB) Pokec (423MB) LiveJournal

(1.08GB)

Orkut (1.78GB)

Orkut-Groups
(5.1GB)

Fig. 2. Relative time for the 3 implementations in order
of Graph Size

Implemen. GEE- Ligra Ligra
seconds) | MatLab | Serial | Parallel

Graph
Twitch (86MB) 0.91 | 0.17 | 0.038
soc-Pokec (423MB) 39.7 1.32 0.37
soc-LiveJournal (1.08GB) 29 2.87 1.11
soc-orkut (1.78GB) 83.22 6.35 1.71
orkut-groups (5.1GB) 197 14 5.9

Table 1. Runtimes in seconds for graphs of various sizes

one were to need to run this algorithm 100 times, the
time to run the MatLab version balloons to 6h, whereas
the parallel Ligra version is under 10m. At this point,
loading the graph’s checkpoints from disk, or incremen-
tally maintaining them becomes the limiting factor to
performance. In Section 5, we include a review of cur-
rent approaches to this problem and discuss their rela-
tive strengths and weaknesses.

4.2. Factors against Parallelism

The benefits of parallelism in our case are counterin-
tuitively most pronounced when the graphs are small.
We believe this is most likely because our Ligra imple-
mentation unfortunately needs to load the Y labels from
disk every time it is run, unlike the MatLab version.
Even though Y € O(n), though much smaller than the
edgelist O(s), can still be up tens of MB in size for bigger
graphs, which requires a non-insignificant load time on
a mechanical hard drive. Fixing this requires changes
to the internal workings of the Ligra engine, which is
impractical for our purposes. Other factors such as the
computation required to distribute and collect work to
and from all cores and collect them, the limited mem-

Runtimes in Seconds (log scale)

Orkut-Groups (5.1GB)
Orkut (1.78GB)
LiveJournal (1.08GB)

Pokec (423MB)

—

0.01 0.1

-

]

Ligra (Parallel)
m Ligra (Serial)

m Matlab

10 100 1000

Fig. 3. Log-Scale plot of the improvement in runtimes observed by switching to Ligra

ory bandwidth of the machine, and Amdahl’s Law con-
tribute to us only seeing a fraction of the possible 12x
speedup expected when running on 12 cores.

5. TEMPORAL GRAPH ALGORITHMS REVIEW

5.1. Motivation

This project started off as a literature review of Tem-
poral Graph Algorithms. Although graphs and graph
algorithms are ubiquitous in the fields of Computer Sci-
ence and Applied Mathematics, less work has been ded-
icated to graphs that evolve over time. This is curious
because the definitive examples of a graph: social net-
works, road and citation networks, electricity grids etc.
are not static.

We should emphasize that we are not referring to in-
cremental or online algorithms that focus on computing
a target value once, then saving computation by updat-
ing this value as new data is introduced, usually with
complexity proportional to the amount of new data. Ex-
amples of incremental work on graphs include [13-22].

Static graph algorithms extract information from the
structure of a graph: node importance metrics such as
Betweenness Centrality, PageRank, distance measures
such as Bellman-Ford and Dijkstra, Max-Flow Min-Cut
which is popular in the Computer Vision community
etc. all take advantage of the spatial relations in the
graph. However, Dynamic or Temporal graphs intro-
duce the time-domain component: how the centrality of
nodes or graph diameter changes as edges are added or

deleted, how communities are formed or broken up etc.
Algorithms in this domain have sparked considerable
recent interest [23-30]. However, in order to run such
algorithms across a graph’s history, an efficient memory
layout of must be created and maintained. This task
is abstracted away by dynamic graph frameworks. Be-
cause of the large size of graphs and their histories, one
cannot keep multiple copies in memory to make them
readily accessible. As a result, dynamic graph engines
suffer from a fundamental tradeoff in access speed ver-
sus memory usage.

5.2. Challenges

This tradeoff stems from the fact that the two most
straightforward ways to store dynamic graphs is either
as the graph G(n,s) at time ty and a list of I changes
corresponding to times f,...,#;, or as a full copy of the
entire graph at every time point Gy,...Gj.

The latter is ideal in terms of computation - any
version of the graph is available at any time, but, stor-
ing multiple copies in memory is impossible with any
large-scale problem, and results in much duplication.
The more granular the graph history, the smaller the
changes as a proportion to the overall graph, leading to
a large amount of duplication.

The former is optimal in terms of storage since it
stores the minimum amount of information to recon-
struct the graph at any point along its history. How-
ever reconstructing the graph at any point involves re-

building the history of the graph since the start up to
the desired point in time. This is a linear-time scan of
the list of changes and is computationally prohibitive
since analyzing the change in a graph is most likely to
prove insightful when studied across a large number
of snapshots, with sufficiently granular changes to the
graph.

An ideal solution would allow for the execution of
time-continuous queries - any granularity of changes
across any arbitrary window or multiple windows in the
graph’s history. Then, the change in metrics such as Be-
tweenness Centrality, Connected Components, PageR-
ank etc. can be expected to reveal interesting insights.

5.3. Current Approaches - Dynamic Graph Frame-
works

Graph Engines that attempt to solve this problem can be
classified into those that accept real-time updates to the
graph, and those that do not. The second group assumes
that the graph and the whole graph history is available
ahead of time. These involve works such as Immortal-
Graph, and Chronos [31,32].

In the first group, two approaches stand out and are
our focus as of writing: Aspen [33] and TEGRA [10]. As-
pen is a single-machine graph framework that extends
Ligra and uses a functional compressed tree structure
to handle streaming updates and simultaneously run
queries. Aspen adds the user-defined Update function
to Ligra that is executed as graph data is fed into the
system. Every time a property is changed, the func-
tional tree is traversed, new nodes are created along
the traversed path and linked to the unchanged part
of the tree. These trees are kept in-memory until any
queries that are running on them finish executing. Be-
cause each of these trees takes O(log 1) space in memory,
this approach relies on aggressively garbage collecting
old trees. For this reason, Aspen supports analysis only
on the latest version of the graph, which doesn’t fulfil
our criteria of arbitrary time-history queries.

TEGRA shares some similarities with Aspen but is
different in two crucial ways: it supports arbitrary time
queries, and it is geared towards distributed computing.
It also uses a tree-based structure - a Persistent Adap-
tive Radix Tree which shares the drawback of Aspen,
mitigated to a certain extent by inferring the needed
granularity of changes from a user’s query. The unnec-
essary parts of the graph history are instead stored as
leaves to disk. With the observation that users tend to
run multiple queries along relatively small windows of
snapshots, TEGRA also utilizes an incremental compu-
tation model. However, the leaves need to be reloaded
and graph rebuilt if higher change granularity is re-
quired. Therefore, there is a tradeoff between memory

usage and granularity of visible changes.

6. CONCLUSION

We demonstrated how GraphEncoderEmbedding’s fron-
tier nature can be exploited for graph-parallel execution
and used the Ligra framework’s EdgeMap interface to
implement a significantly faster version of the algo-
rithm. We empirically benchmarked the alternative im-
plementations on graphs of various sizes and reported
on the results. We have made the code available on
GitHub. We also contributed a review of dynamic graph
algorithms, describing their potential utility, challenges
in execution, dynamic graph engine research, and the
tradeoff between access speed and memory efficiency.

7. APPENDIX
A. BENCHMARKS

A.1. Description of Graphs Used

All graphs with the exception of orkut-groups were
sourced from [34]. Orkut-groups was sourced from
[35]. GEE has a single parameter - the desired dimen-
sion of the embedding K. Values used are shown in
Table 2. Class labels were generated using the util-
ity provided by GraphEncoderEmbedding and used as
ground-truth for the semi-supervised GEE algorithm.
90% of the labels were deleted uniformly at random.

Graph Name N. Vertices n | N. Edges s | N. classes K | Size
Twitch 168K 6.8M 20 86MB
soc-Pokec 1.6M 30.6M 50 423MB
soc-LiveJournal | 4.8M 68.9M 50 1.08GB
soc-orkut 3M 117M 50 1.78GB
orkut-groups 8.7M 327M 40 5.1GB

Table 2. Size description of graphs used for benchmark-
ing

A.2. Results on a Consumer grade Intel i7-4770 and
GEE-Python

We found that the performance of GEE on Python was
slower than expected. After contacting the author, we
ran the tests on MatLab 2022a which significantly im-
proved performance. The results can be seen in Table
1. Here we present the original runtimes run on the
Python version of GEE on a commodity Intel i7-4770
desktop computer. Because this machine has less RAM
than our server machine, we could not manage to run
the orkut-groups graph.

https://github.com/Ariel5/ligra

(8]

Implemen. GEE- Ligra Ligra
seconds) Python | Serial | Parallel
Graph
Twitch (86MB) 29.5 0.3 0.014
soc-LiveJournal (1.08GB) | 298 (4:58) | 2.06 1.23
soc-orkut (1.78GB) 483 (8:03) | 4.23 1.86

Table 3. Runtimes in seconds and minutes a commodity
desktop machine

(1]

(2]

(5]

(6]

[7]

B. REFERENCES

John Jumper, Richard Evans, Alexander Pritzel,
Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin
Zidek, Anna Potapenko, Alex Bridgland, Clemens
Meyer, Simon A A Kohl, Andrew] Ballard,
Andrew Cowie, Bernardino Romera-Paredes,
Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor
Back, Stig Petersen, David Reiman, Ellen Clancy,
Michal Zielinski, Martin Steinegger, Michalina
Pacholska, Tamas Berghammer, Sebastian Bo-
denstein, David Silver, Oriol Vinyals, Andrew W
Senior, Koray Kavukcuoglu, Pushmeet Kohli,
and Demis Hassabis, “Highly accurate protein
structure prediction with AlphaFold,” Nature, vol.
596, no. 7873, pp. 583-589, Aug. 2021.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan
Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun, “Graph neural
networks: A review of methods and applications,”
Al Open, vol. 1, pp. 57-81, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena,
“Deepwalk: Online learning of social representa-
tions,” in Proceedings of the 20th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining, New York, NY, USA, 2014, KDD ’14,
p- 701-710, Association for Computing Machin-

ery.

Aditya Grover and Jure Leskovec, “node2vec:
Scalable feature learning for networks,” 07 2016,
vol. 2016, pp. 855-864.

Thomas Kipf and Max Welling, “Semi-supervised
classification with graph convolutional networks,”
ArXiv, vol. abs/1609.02907, 2017.

Cencheng Shen, Qizhe Wang, and Carey E. Priebe,
“Graph encoder embedding,” 2021.

Haewoon Kwak, Changhyun Lee, Hosung Park,
and Sue B. Moon, “What is twitter, a social net-
work or a news media?,” in WWW ’10, 2010.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Robert Meusel, Sebastiano Vigna, Oliver Lehm-
berg, and Christian Bizer, “The graph structure
in the web - analyzed on different aggregation lev-
els,” J. Web Sci., vol. 1, pp. 33-47, 2015.

Siddhartha Sahu, Amine Mhedhbi, Semih Sali-
hoglu, Jimmy Lin, and M. Tamer Ozsu, “The ubiq-
uity of large graphs and surprising challenges of
graph processing,” Proc. VLDB Endow., vol. 11, no.
4, pp. 420-431, dec 2017.

Anand Padmanabha Iyer, Qifan Pu, Kishan Patel,
Joseph E. Gonzalez, and Ion Stoica, “TEGRA: Ef-
ficient Ad-Hoc analytics on evolving graphs,” in
18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21). Apr. 2021, pp.
337-355, USENIX Association.

Julian Shun and Guy E. Blelloch, “Ligra:
A lightweight graph processing framework for
shared memory,” SIGPLAN Not., vol. 48, no. 8, pp.
135-146, feb 2013.

L. Dagum and R. Menon, “Openmp: an industry
standard api for shared-memory programming,”
IEEE Computational Science and Engineering, vol. 5,
no. 1, pp. 46-55, 1998.

Fuad Jamour, Spiros Skiadopoulos, and Panos Kal-
nis, “Parallel algorithm for incremental between-
ness centrality on large graphs,” IEEE Transactions
on Parallel and Distributed Systems, vol. 29, no. 3,
pp. 659-672, 2018.

Nicolas Kourtellis, Gianmarco De Fran-
cisci Morales, and Francesco Bonchi, “Scalable
online betweenness centrality in evolving graphs,”
in 2016 IEEE 32nd International Conference on
Data Engineering (ICDE), 2016, pp. 1580-1581.

Rishi Singh, Keshav Goel, Sudarshan Iyengar, and
Sukrit Gupta, “A faster algorithm to update be-
tweenness centrality after node alteration,” 12
2013, vol. 11.

Min-Joong Lee, Sunghee Choi, and Chin-Wan
Chung, “Efficient algorithms for updating be-
tweenness centrality in fully dynamic graphs,” Inf.
Sci., vol. 326, no. C, pp. 278-296, jan 2016.

Frank McSherry, Derek Murray, Rebecca Isaacs,
and Michael Isard, “Differential dataflow,” .

Zhuhua Cai, Dionysios Logothetis, and Georgos
Siganos, “Facilitating real-time graph mining,”
in Proceedings of the Fourth International Workshop
on Cloud Data Management, New York, NY, USA,
2012, CloudDB ’12, p. 1-8, Association for Com-
puting Machinery.

[19]

[21]

[24]

[26]

[27]

Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan
Miao, Xuetian Weng, Ming Wu, Fan Yang, Lidong
Zhou, Feng Zhao, and Enhong Chen, “Kineograph:
Taking the pulse of a fast-changing and connected
world,” in Proceedings of the 7th ACM European
Conference on Computer Systems, New York, NY,
USA, 2012, EuroSys "12, p. 85-98, Association for
Computing Machinery.

Hongyang Zhang, Peter Lofgren, and Ashish Goel,
“Approximate personalized pagerank on dynamic
graphs,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, New York, NY, USA, 2016, KDD
’16, p. 1315-1324, Association for Computing Ma-
chinery.

Toyotaro Suzumura, Shunsuke Nishii, and Masaru
Ganse, “Towards large-scale graph stream pro-
cessing platform,” in Proceedings of the 23rd In-
ternational Conference on World Wide Web, New
York, NY, USA, 2014, WWW ’14 Companion, p.
1321-1326, Association for Computing Machin-

ery.

Keval Vora, Rajiv Gupta, and Guoqing Xu, “Syn-
ergistic analysis of evolving graphs,” ACM Trans.
Archit. Code Optim., vol. 13, no. 4, oct 2016.

Ahmad Alsayed and Desmond J. Higham, “Be-
tweenness in time dependent networks,” Chaos,
Solitons & Fractals, vol. 72, pp. 35-48, 2015, Mul-
tiplex Networks: Structure, Dynamics and Appli-
cations.

Dylan Walker, Huafeng Xie, Koon-Kiu Yan, and
Sergei Maslov, “Ranking scientific publications us-
ing a model of network traffic,” Journal of Statis-
tical Mechanics: Theory and Experiment, vol. 2007,
no. 06, pp. P06010-P06010, jun 2007.

Derek Greene, Dénal Doyle, and Padraig Cunning-
ham, “Tracking the evolution of communities in
dynamic social networks,” in 2010 International
Conference on Advances in Social Networks Analysis
and Mining, 2010, pp. 176-183.

Jaewon Yang and Jure Leskovec, “Defining
and evaluating network communities based on
ground-truth,” Knowledge and Information Sys-
tems, vol. 42, 05 2012.

William Brendel, Mohamed Amer, and Sinisa
Todorovic, “Multiobject tracking as maximum
weight independent set,” in CVPR 2011, 2011, pp.
1273-1280.

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

David Gleich and Ryan Rossi, “A dynamical sys-
tem for pagerank with time-dependent teleporta-
tion,” Internet Mathematics, vol. 10, 11 2012.

Polina Rozenshtein and Aristides Gionis, “Tem-
poral pagerank,” in Machine Learning and Knowl-
edge Discovery in Databases, Paolo Frasconi, Niels
Landwehr, Giuseppe Manco, and Jilles Vreeken,
Eds., Cham, 2016, pp. 674-689, Springer Interna-
tional Publishing.

Elise Henry, Loic Bonnetain, Angelo Furno, Nour-
Eddin El Faouzi, and Eugenio Zimeo, “Spatio-
temporal correlations of betweenness centrality
and traffic metrics,” in 2019 6th International Con-
ference on Models and Technologies for Intelligent
Transportation Systems (MT-ITS), 2019, pp. 1-10.

Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu,
Fan Yang, Lidong Zhou, Vijayan Prabhakaran, En-
hong Chen, and Wenguang Chen, “Immortal-
graph: A system for storage and analysis of tem-
poral graphs,” ACM Trans. Storage, vol. 11, no. 3,
jul 2015.

Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu,
Fan Yang, Lidong Zhou, Vijayan Prabhakaran,
Wenguang Chen, and Enhong Chen, “Chronos: A
graph engine for temporal graph analysis,” in Pro-
ceedings of the Ninth European Conference on Com-
puter Systems, New York, NY, USA, 2014, EuroSys
’14, Association for Computing Machinery.

Laxman Dhulipala, Guy E. Blelloch, and Julian
Shun, “Low-latency graph streaming using com-
pressed purely-functional trees,” in Proceedings
of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, New
York, NY, USA, 2019, PLDI 2019, p. 918-934, As-
sociation for Computing Machinery.

Jure Leskovec and Andrej Krevl, “SNAP Datasets:
Stanford large network dataset collection,” http://
snap.stanford.edu/data, June 2014.

Ryan A. Rossi and Nesreen K. Ahmed, “The net-
work data repository with interactive graph ana-
lytics and visualization,” in AAAI, 2015.

http://snap.stanford.edu/data
http://snap.stanford.edu/data

	 Introduction
	 Parallelizing Graph Encoder Embedding
	 Brief Description of the Graph Encoder Embedding (GEE) Algorithm
	 Ligra and the EdgeMap Model
	 Implementation
	 Optimizations

	 Setup for Benchmarks
	 Findings
	 Application to Temporal Graph Analysis
	 Factors against Parallelism

	 Temporal Graph Algorithms Review
	 Motivation
	 Challenges
	 Current Approaches - Dynamic Graph Frameworks

	 Conclusion
	 Appendix
	 Benchmarks
	 Description of Graphs Used
	 Results on a Consumer grade Intel i7-4770 and GEE-Python

	 References

