
EFFICIENT BATCHED CPU/GPU IMPLEMENTATION OF ORTHOGONAL MATCHING
PURSUIT FOR PYTHON

Ariel Lubonja

Johns Hopkins University
Dept. of Applied Mathematics and Statistics

Baltimore, MD, USA
alubonj1@jh.edu

Sebastian Præsius

Technical University of Denmark
DTU Compute

Kongens Lyngby, Denmark
s164198@student.dtu.dk

ABSTRACT

Finding the most sparse solution to the underdeter-
mined system y = Ax, given a tolerance, is known to
be NP-hard. A popular way to approximate a sparse
solution is by using Greedy Pursuit algorithms, and
Orthogonal Matching Pursuit (OMP) is one of the most
widely used such solutions. For this paper, we imple-
mented an efficient implementation of OMP that lever-
ages Cholesky inverse properties as well as the power
of Graphics Processing Units (GPUs) to deliver up to
200x speedup over the OMP implementation found in
Scikit-Learn.

Index Terms— Compressed Sensing, Sparse Recov-
ery, Orthogonal Matching Pursuit, Graphics Processing
Unit

1. INTRODUCTION

Exploitation of the sparsity of a signal is key to re-
construction from significantly fewer samples than the
Nyquist Rate [1]. A signal vector x is said to be S-sparse
if it includes at most S non-zero entries. The signal x is
recovered by solving

y = Ax+ ε

where y is a M × 1 measurement vector, A is a wide
dictionary matrix, i.e. M ×N where M � N , and x is
the sparse recovered signal with S non-zero elements.
ε is the error in our reconstruction. Many variations of
OMP have been proposed, but the simplest implemen-
tation remains widely used because of its understand-
ability and ease of implementation.

There are three main ways to reduce the complexity
of the OMP algorithm: through Cholesky factorization,
the Matrix Inversion Lemma, or the QR factorization
and our implementation builds on work from [2], [3].

In an effort to keep our implementation as widely
applicable as possible, we made the no assumptions

on the properties of the A dictionary. Considerable re-
search has gone into leveraging properties of the certain
specific dictionary matrices [4, 5].

This paper is organized as follows: Section 2 de-
scribes the algorithms. Section 3 describes our most
important findings while implementing them. Finally,
section 4 provides benchmarks and comparisons with
other implementations.

Algorithm 1: Orthogonal Matching Pursuit

input : A ∈RMxN dictionary
y ∈RM : measurement vector
S: sparsity level
ε target error (optional)

output: x̂ signal reconstruction

auxiliary variables: ri ∈RM-residual at k-th
iteration, S0-initial support set

initialization: x̂0 = 0, r0 = y

for k = 1 : S do
n∗ = argmax1≤n≤N

|〈rk−1,an〉|
||an ||

Sk = Sk−1 ∪n∗

x̂k = argminx ||y−ASkx|| =
(
A>SkASk

)−1
A>Sky

rk = y−ASk x̂k
end
Or stop when ||y−ASk x̂k || ≤ ε

2. IMPLEMENTATIONS OF OMP

OMP achieves good recovery performance, and if the
dictionary A satisfies the Restricted Isometry Property
(RIP), exact recovery is guaranteed [6].

Orthogonal Matching Pursuit is a greedy algorithm,
which tries to solve the following problem:

argmin
x∈RN

∥∥∥Ax − y
∥∥∥ s.t. |supp x| ≤ S

Given the regression matrix A = [a1, a2, . . . , an] and
sparsity level S, it tries to find the S-sparse x, which
gave rise to the observation y by Ax = y. It is a recur-
sive algorithm, which greedily at every step picks the
column of A which correlates mostly with the current
residual. (Essentially a depth first search of the power
set) We can see how the residual rk is a function of the
current regression subset Sk , and there are N !

S!(N−S)! pos-
sibilities for SS , By using a greedy approach rather than
an exhaustive search, this is reduced to just S steps, but
it does not necessarily converge to the global optimum.

We will use a dense representation of ASk (denoted
Ak), and we will use the exact solution to A>k Ak x̂ = A>k y
in our steps. Using a dense representation gives us
fast linear equation solving and matrix-multiplication,
since the variables are stored in contiguous memory,
and these operations are the main bottlenecks for OMP.

2.1. Our “Naı̈ve” Algorithm

We should stress that this ”naı̈ve” algorithm is quite
heavily optimized in terms of memory layout and other
engineering aspects; more details available in Section 3.
It is conceptually identical to the OMP algorithm de-
scribed in algorithm 1, hence the term ”naı̈ve”. It iter-
ates as follows:

Ak B
[

Ak−1 an∗
]

by appending an∗ ∈RM (1)

A>k y B
[

A>k−1y a>n∗y
]

by appending a>n∗y ∈R (2)

A>k Ak B

[
A>k−1Ak−1 A>k−1an∗
· · · a>n∗an∗

]
by ”appending” A>k an∗ =

[
A>k−1an∗
a>n∗an∗

]
∈Rk

(3)

As such, Ak is a dense representation of ASk . We omit
the lower triangle in A>k Ak since it is symmetric.

One can see that this reformulation of OMP al-
lows us to iterate using fewer computations than if
we compute all of A>Sky and A>SkASk each iteration;
there is likely no way to get around having to use at
least O(S2) memory for the two inputs to the linear
equation solvers, but one can store Ak in-place inside
A by swapping columns, so the total memory comes
out at MN + O(S2) = O (MN), since S ≤ M ≤ N . We
use a Cholesky factorization of A>k Ak to then solve
A>k Ak x̂ = A>k y, and finally get rk = y −Ak x̂. 1

The approach used in Scikit-Learn is similar. They
pre-compute A>y ∈ R

N , and optionally also A>A
(which we also allow for in our Naı̈ve alg.), thereby
trading memory for computational time. The values of

1Using QR-factorization is also possible, but Cholesky is about
twice as fast. (Half FLOPS) And it requires a positive definite A>k Ak .

A>k y are stored in-place inside A>y by swapping (i.e.
reordering). The main difference is that the Scikit-Learn
approach directly stores and progressively updates the
Cholesky factorization Vk ∈ R

k×k of A>k Ak , instead of
storing A>k Ak , which is potentially faster. Iterates as:

V1 B

√
a>n∗an∗ = ‖an∗‖ (4)

Vk B

 Vk−1 0

z>
√
‖an∗‖2 − ‖z‖2

 (5)

Where z is the solution to Vk−1z = A>k−1an∗ .

It can be seen that see this is the Cholesky-factorization
of A>k Ak by the fact that V1V>1 = ‖an∗‖2 = A>1 A1 and:

VkV>k =
[

Vk−1V>k−1 Vk−1z
· · · ‖an∗‖2 − ‖z‖2 + z>z

]
=

[
A>k−1Ak−1 A>k−1an∗
· · · a>n∗an∗

]
= A>k Ak

(6)

Re-factorizing the way we do in our naive algorithm
takes O(k3) time. Cholesky-updating involves solving
triangular systems of equations, taking just O(k2) time.

Our implementations are adapted for batch pro-
cessing. Precomputing A>y is not efficient in terms of
space/time, as we have B of the y’s, so memory will be
increased by O(BN), while doing so only saving around
1% of the running time in practice (a>n∗y in eq. (2) is just
a simple dot product.) Similarly, reordering A is not an
applicable memory-optimization as Ak is different for
each batch element. But precomputing and using A>A
is possible and can save up to 15% of the running time
(in our experience), while spending O(N2) memory. It
is used in eq. (3) where A>an∗ = [A>A]n∗ .

2.2. Algorithm v0

The algorithm v0 from [2] uses an inverse Cholesky fac-
torization scheme. It uses precomputed A>y and A>A,
and is essentially based on the update formulae:

F1 B 1/ ‖an∗‖ (7)

Fk B
[

Fk−1 −γFk−1z
0 γ

]
(8)

Where z = F>k−1A>k−1an∗ and γ =
1√

‖an∗‖2 − ‖z‖2

One can see that this is the first factor in the Cholesky
factorization of (A>k Ak)

−1 = (VkV>k)−1 = V−>k V−1
k by

FkV>k =
[

Fk−1 −γFk−1z
0 γ

][
V>k−1 z>

0 1/γ

]
(9)

=
[

Fk−1V>k−1 0
0 1

]
= I⇒ Fk = V−>k

z = F>k−1A>k−1an∗ ⇒Vk−1z = A>k−1an∗ (10)

Which follows by induction from the base F1V>1 = 1.
(Not a complete proof.)

Using only matrix-vector products one gets:

ŷ = Ak x̂

= Ak

(
A>k Ak

)−1
A>k y

= AkFkF>k A>k y = AkFk(AkFk)
>y

(11)

And this is especially desirable in parallel compute
environments compared to solving triangular systems
since less synchronization is needed. It turns out one
does not need to store the inverse Cholesky Fk to it-
erate. This is because all we need to perform an it-
eration are the new projections, and the algorithm v0
instead directly updates these, while filling out the
matrix Dk = A>AkFk (and Fk if this is needed to find x̂).

This is done by a single matrix-vector multiplication
per iteration in O(Nk) time, meaning the batched im-
plementation running time is O(N2 +BNM +BNS2) for
the Gramian, initial projections and per-iteration costs.

The update steps are notationally a little involved,
so we refer to the original paper [2]. The paper also
contains less memory-consuming (but slower) versions,
which can be useful since the asymptotic memory use is
O(NM +N2 + BNS) (inputs, Gramian and DS ∈ RS×N),
compared to just O(NM+B(N +MS)) for the previously
discussed algorithms. Especially on a GPU the differ-
ence between storingN2 +BNS compared to BMS float-
ing point numbers can be significant.

In the interest of time we focused only on imple-
menting and optimizing the two algorithms naive
and v0. With most focus on CPU-optimizations for the
naive, and GPU-optimizations for v0.

3. IMPLEMENTATION DETAILS AND
ENGINEERING TRICKS

Most matrix operations done in Python’s Numpy call
the underlying linear algebra libraries BLAS (Basic Lin-
ear Algebra Subprograms) and LAPACK (Linear Alge-
bra Package). The same is true for MATLAB, and the
reason is that these libraries are highly optimized. For
example Intel’s MKL, contains processor-specialized
versions of these libraries that are optimized to use the
full instruction set of the CPU and exploit it’s cache as
much as possible, often achieving close to the theoreti-
cally possible number of FLOPS (first limited by clock
speed, then by memory throughput for problems that
do not fit in cache). Which brings us to the first main
takeaway.

3.1. Memory layout

Ensure data is contiguous as much as possible. Since BLAS
handles the matrix-multiplication in a highly optimized
way (and this is the main bottleneck), we can leverage
our control of the memory-layout of the inputs to get
more speed. A useful programming pattern we found
was to separate memory layout from it’s use:

As = np.zeros([B, M, S])

As = np.zeros([B, S, M]).transpose([0, 2, 1])

If we look at the two definitions of As above, they both
have the same shape B ×M × S and can be used inter-
changeably with another, but it will be faster to write a
column into the second one as columns are stored con-
tiguously - One column spans a single line in memory.

By separating layout from use one can quickly find
which layout is the best-performing, even in cases
where it is not obvious, or trade-offs must be made.

3.2. Matrix batched-matrix products

A less known fact is that you can sometimes get a higher
performance in a matrix times batched-matrix product
(in this case batched vectors r), by exploiting:[

A>r1 · · · A>rB
]

= A>
[
r1 · · · rB

]
(12)

Notice how this matrix batched-vector product is equiv-
alent to a simple matrix-matrix product, which can be
performed through a single call to gemm, giving BLAS
full control of producing the result we need in the most
efficient manner. This is done through transposing and
reshaping, which should be noted only changes the
meta-data for the tensors. In our experience doing this
gives a 2-8 times speed-up. See batch_mm in the code.

We assume that A has normalized columns (if
not, give normalize=True to run_omp), such that (ap-
pendix A): 〈an,rk−1〉/‖an‖ = a>n rk−1 = [A>rk−1]n .

3.3. Packed representation

For our naive algorithm we found it useful to store
A>k Ak in a packed representation and then use the BLAS
functions ppsv instead of posv (positive-definite solver),
as this significantly cut down on the time to write and
especially fetch a sub-matrix of A>S AS , since then any
sub-matrix is contiguous in memory.

This means that instead of storing the k×k submatrix
in a strided manner inside a memory block which which
is B×S×S, we only store the k(k+1)/2 = 1+2+ · · ·+k tri-
angle of this. Then all operations becomes contiguous.

This optimization, and the one in section 3.2 are
mostly relevant for CPU. For GPU there already exists

specialized calls for batched matrix-matrix multiplica-
tion, batched Cholesky factorization and batched tri-
angular system solving. There is no ppsv equivalent in
cuBLAS/cuSOLVER for CUDA (the GPU Parallel Com-
puting platform available on NVIDIA graphics cards).
We did not experiment with calling CUDA manually,
but used the PyTorch library for this.

3.4. Efficient batched argmax

A core part of the OMP loop is argmax, which can be
performed on a batch by:

(B, N) -> (B,)

n_star = abs(projections).argmax(1)

One issue is that abs creates an intermediate B ×N ar-
ray in the first pass, and then a second pass over this is
needed to get the argmax. For CPU we ended up using
the BLAS function i_amax, which finds the index of the
absolute maximum value in an array.

First we tried running a loop over the B batch ele-
ments using the scipy.linalg.blas wrapper, but for small
problems the Python overhead is so significant that we
do not get much benefit. Therefore we switched to im-
plementing this loop in Cython, which is a superset of
Python that compiles directly to C++. Through this
we call i_amax and ppsv in a loop, which gave a ma-
jor speed-up: Around 5 times for the argmax compared
to 1-2 times if using a loop in Python.

It can be hard to get the arguments for these calls
right since they take fortran-style arguments (was orig-
inally written in FORTRAN) See argmax_blast in code.

Direct calls to cuBLAS on GPU for e.g. i_amax could
potentially give a speed-up. There are only around 3
batched kernels in cuBLAS, and this is not one of them,
so we would have to launch the kernels in a loop; but
then we get an overhead just from the simple transfer
of maybe thousands of kernel calls and arguments to
the GPU. It would probably be worthwhile for small B.

The argmax line takes 5-25% of the GPU computa-
tion time in our experience, so next step may be to im-
plement a custom reduction kernel for this, which is not
trivial if it must be efficient due to the specific hardware
architecture. We would recommend CuPy for this.

3.5. Batched stopping criteria

We did not spend too long on this part since it is not
essential, so there is great space for improvement here.

For the naive algorithm we implement early stop-
ping by keeping an active set of batch elements, along
with their individual data – and then we remove all
their data when they are done, such that we are left with
a block of B− 1 elements (and their data).

There is a slight overhead of having to move all this
memory, but in our experience it is outweighed by the
improvement in speed on subsequent iterations, which
then became faster as there are fewer batch elements.

For v0 however, due to the large size of DS ∈ RS×N
even just allocating it with new_zeros takes significant
time, which is why we use new_empty to get uninitialized
memory for it. This also means that the naive batching
strategy of moving all this memory is not efficient (espe-
cially on GPU, where parallel threads are used to move
every single byte).

For v0 we opted to just save the result when the stop-
ping criteria was met, but still keep all the data inside
the batch. The two approaches we chose mean that the
run-time is relatively unchanged from before. But it
could be probably be done more efficiently.

3.6. Other possible optimizations

One possible optimization is custom functions / kernels.
This can cut down somewhat on intermediate results,
and improve memory locality. Since BLAS operates as
an efficient black box, it can be hard to e.g. fuse the
matrix multiplication with the abs argmax, but in v0 we
have to scale a lot different of vectors by γ , which could
possibly be faster if it was done with a single kernel. See
e.g. Appendix C for a line-by-line profiling.

One can use streams in CUDA to launch kernels in
parallel. There are only few places where we could po-
tentially get a speed-up from this due to the fact that
results on previous lines are frequently needed on the
subsequent ones. For example eq. (2) and eq. (3) are in-
dependent, but the first takes almost no time compared
to the latter. Algorithm v0 could possibly get a speed-
up of around 5% with this, since calculating the inverse
Cholesky is independent from the iterations. The whole
reason for batching is so that we can do multiple of
these non-parallelizable problems in parallel.

For the naive algorithm the next step may be to
switch to a Cholesky-update scheme. This approach is
likely strictly faster than re-factorizing every iteration.

One can give half-precision tensors to our imple-
mentation. While this does not seem to give a speed-up,
it will reduce the memory requirements. Especially in
large problems on GPU, memory can become an issue
when using v0 (meaning one has to use a lower batch
size, possibly reducing efficiency). One could look into
the memory-saving variants. Using double precision re-
duces speed by half on GPU.

It will be simple to modify the v0 code to have multi-
ple different design matrices along with the correspond-
ing y’s, but we thought it was reasonable to assume they
are the same. (As Scikit Learn also does)

4. BENCHMARKS

The interface for our code has the same functionality as
that from Scikit-Learn, except that the y is batched in
the first dimension and not the second.

In fig. 1, the benchmarks are run with A ∈ R8M×M ,
y = R

100×M (B = 100), and S = M/4, where M is the
variable shown in the x-axis, ranging from 16 to 2048.
Larger values ofM could not be attempted due to mem-
ory exhaustion on GPU for B = 100. In this case the GPU
version is orders of magnitude faster than CPU for large
problems; this is also partly because we are using a low
batch size, so the GPU is not fully utilized for small M.
(B = 100000 is more appropriate for M ≤ 64).

Generally v0 will outperform the naive algorithm
when S is large. And the GPU will almost always
outperform the CPU provided the batch size is large
enough, except maybe in case of tiny problems and a
multi-core CPU.

Fig. 1. Relative time for running OMP.

The raw data for this plot is in appendix B.
We also inspected the numerical error of the algo-

rithms, but they are all around the same.

4.1. Yale Face Classification (HW7)

In this perhaps more relatable benchmark, we use our
algorithms to classify the 1207 test images from the
Yale dataset in Homework 7. To make the problem
more challenging, the dictionary A contains the entire
set of training images, not downsampled, therefore,
A ∈ R8064×1207 ' R

96x84x1207. All images from the test
set have been batched into a matrix y, with dimen-
sions R1207×8064. We ran the problem in the algorithms
described above, as well as our simple sequential im-
plementation of OMP in Matlab from Homework 5.
Sparsity level was set to S = 30.

ff code on Colab, and our code is available at https:
//github.com/Ariel5/omp-parallel-gpu-python. If you

HW5
OMP

(Matlab) Sklearn
Naı̈ve
CPU

V0
CPU

Naı̈ve
GPU

V0
GPU

496.2 1443 13.09 1.214 0.609 0.111

Table 1. Solving time [s] for 1207 96x84px test images.

Fig. 2. Bar plot emphasizing the order-of-magniture dif-
ference in performance for Homework 7

encounter any difficulties, please do not hesitate to
email us at alubonj1@jhu.edu and sebastian.devel@
gmail.com or s164198@student.dtu.dk.

5. CONCLUSION

We implemented a ”naive” version of OMP, and a newer
algorithm called v0. Both of these outperform the com-
monly used Scikit-Learn implementation by a large
margin, while having the same functionality.

With a GPU we could get a speed-up of several or-
ders of magnitude: 200x faster than Scikit-Learn. But
there is still room for improvement.

https://colab.research.google.com/drive/1BwqjGQC5XfaRiTUxit-afW0vg6ezjsh5?usp=sharing
https://github.com/Ariel5/omp-parallel-gpu-python
https://github.com/Ariel5/omp-parallel-gpu-python
alubonj1@jhu.edu
sebastian.devel@gmail.com
sebastian.devel@gmail.com
s164198@student.dtu.dk

6. APPENDIX

A. NORMALIZED COLUMNS OF DICTIONARY

The main approaches to speeding up the algorithm
is to minimize the number of operations to perform
each iteration. Many algorithms assume normalized
columns in A such that correlation 〈an,rk−1〉/‖an‖ turns
into a simple projection 〈an,rk−1〉 = a>n rk−1 = [A>rk−1]n
– this is valid since the algorithm is invariant to col-
umn norm, as it will be divided out in the correla-
tion step, and lastly, the least-squares estimate ŷk B
ASkA+

Sky = ASkargminx∈Rk
∥∥∥y −ASkx

∥∥∥ is unique, thus
also invariant to column scaling. For the final estimate
x̂ from A>S AS x̂ = A>S y one should then not use the pre-
normalized A, or at least scale x̂ appropriately (by the
reciprocal of column the norm) to account for this.

B. BENCHMARK DATA

Fig. 3. Example 96x84 image used for benchmarking
(HW7)

CPU-Scikit-learn CPU-Naı̈ve CPU-v0 GPU-Naı̈ve GPU-v0
0.038 0.002 0.003 0.005 0.002
0.040 0.003 0.004 0.004 0.003
0.047 0.003 0.004 0.004 0.003
0.062 0.005 0.007 0.006 0.004
0.142 0.016 0.020 0.012 0.009
0.489 0.070 0.078 0.023 0.016
2.393 0.436 0.300 0.053 0.032
11.173 3.265 1.838 0.172 0.104
109.597 26.796 12.326 0.546 0.567
1077.419 186.313 91.159 4.392 4.475

Table 2. The timing results [seconds] for varying M.

C. GPU PER-LINE PERFORMANCE

For the implementation of the naive algorithm on GPU,
with a large problem instance, the per-line time is:

Line # % Time Line Contents

================================

29 def run_omp(precompute=True, alg='naive'):

55 11.0 precompute = X.T @ X

59 89.0 omp_naive(..., XTX = precompute)

115 def omp_naive(...):

174 26.4 projections = XT @ r[:, :, None]

175 1.2 sets[:, k] = projections.abs().argmax(-1)

208 65.5 solutions = cholesky_solve(ATA, ATy)

214 3.9 torch.baddbmm(...) # update r

With around 2% of time spent on transferring to/from
GPU. And if we take a tiny problem instance (but huge
batch size), the transfer will instead be around 14% of
the time spent. Other differences: Line 174 takes then
8.5%, but line 175 takes 21.1%. Also line 208 takes only
40.6%, but line 214 then takes 18.6%. The rest is spread
out on many different places.

And the break-down for v0 on GPU with tiny prob-
lem instances:

Line # % Time Line Contents

=================================

29 def run_omp(..., alg='v0'):

61 99.6 ... = omp_v0(...)

218 def omp_v0(...):

258 6.2 sets[k] = projections.abs().argmax(1)

266 8.1 D_mybest[:, k] *= temp_F_k_k

267 65.8 D_mybest[:, k, :, None].baddbmm_(...)

272 10.1 projections -= temp_a_F * D_mybest[:, k]

276 1.9 torch.bmm(..., out=F[:, k, None, :])

It can be seen how majority of time is spent on the ma-
trix multiplications to update the D-matrix (D_mybest),
and around 2% is spent on the F-matrix which is used
to get x̂. And for v0 on large problem instances (small
batch size), the transfer time is 6.8%. A break-down:

Line # % Time Line Contents

===============================

29 def run_omp(..., alg='v0'):

55 45.2 precompute = X.T @ X

61 54.8 ... = omp_v0(...)

218 def omp_v0(...):

258 4.6 sets[k] = projections.abs().argmax(1)

260 2.5 torch.gather(...) # Get from XTX

262 4.2 D_mybest_maxindices = ... # New D column

263 4.8 torch.rsqrt(1 - innerp(D_mybest_maxindices))

267 58.5 D_mybest[:, k, :, None].baddbmm_(...)

276 6.2 torch.bmm(..., out=F[:, k, None, :])

We see that the precomputation time is actually very
significant (especially since v0 is comparably so fast).
But this precompute time can be shared between batches,
so subsequent batches can potentially execute almost
twice as fast. Since line 267 is a cuBLAS bottleneck, we
likely cannot get more than a 50-70% further speed-up.

D. REFERENCES

[1] Emmanuel J. Candes and Michael B. Wakin, “An
introduction to compressive sampling,” vol. 25, no.
2, pp. 21–30.

[2] Hufei Zhu, Wen Chen, and Yanpeng Wu, “Efficient
implementations for orthogonal matching pursuit,”
vol. 9, no. 9.

[3] Yong Fang, Liang Chen, Jiaji Wu, and Bormin
Huang, “Gpu implementation of orthogonal match-
ing pursuit for compressive sensing,” pp. 1044–
1047, 2011.

[4] David Donoho, Yaakov Tsaig, Iddo Drori, and Jean-
Luc Starck, “Sparse solution of underdetermined
systems of linear equations by stagewise orthogonal
matching pursuit,” vol. 58, pp. 1094–1121.

[5] Boris Mailhe, Remi Gribonval, Frederic Bimbot, and
Pierre Vandergheynst, “A low complexity orthogo-
nal matching pursuit for sparse signal approxima-
tion with shift-invariant dictionaries,” in 2009 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing, pp. 3445–3448.

[6] Emmanuel Candès, “The restricted isometry prop-
erty and its implications for compressed sensing,”
vol. 346, pp. 589–592.

	 Introduction
	 Implementations of OMP
	 Our ``Naïve'' Algorithm
	 Algorithm v0

	 Implementation details and Engineering Tricks
	 Memory layout
	 Matrix batched-matrix products
	 Packed representation
	 Efficient batched argmax
	 Batched stopping criteria
	 Other possible optimizations

	 Benchmarks
	 Yale Face Classification (HW7)

	 Conclusion
	 Appendix
	 Normalized Columns of Dictionary
	 Benchmark data
	 GPU Per-line performance
	 References

